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ABSTRACT CardioLive

Online Cardiac Monitoring (OCM) emerges as a compelling
enhancement for the next-generation video streaming plat-
forms. It enables various applications including remote health,
online affective computing, and deepfake detection. Yet the
physiological information encapsulated in the video streams
has been long neglected. In this paper, we present the de-
sign and implementation of CardioLive, the first online car-
diac monitoring system in video streaming platforms. We
leverage the naturally co-existed video and audio streams
and devise CardioNet, the first audio-visual network to
learn the cardiac series. It incorporates multiple unique de-
signs to extract temporal and spectral features, ensuring
robust performance under realistic video streaming condi-
tions. To enable the Service-On-Demand online cardiac mon-
itoring, we implement CardioLive as a plug-and-play mid-
dleware service and develop systematic solutions to prac-
tical issues including changing FPS and unsynchronized
streams. Extensive experiments have been done to demon-
strate the effectiveness of our system. We achieve a Mean
Square Error (MAE) of 1.79 BPM error, outperforming the
video-only and audio-only solutions by 69.2% and 81.2%, re-
spectively. Our CardioLive service achieves average through-
puts of 115.97 and 98.16 FPS when implemented in Zoom
and YouTube. We believe our work opens up new appli-
cations for video stream systems. Our code is available at
https://anonymous.4open.science/r/CardioNet-4B1E/.

1 INTRODUCTION

Video streaming has exploded in recent years, and its growth
shows no signs of slowing down. From social platforms like
TikTok that have turned live video sharing into a global
phenomenon, to Zoom, which has become synonymous with
remote work and learning, video streaming has woven itself
into the fabric of our daily lives. The popularity of these
platforms has not waned even after the COVID-19 pandemic.

Figure 1: Online Cardiac Monitoring (OCM).

The market is booming steadily [12], reflecting our collective
appetite for real-time, interactive, and accessible content.
Online Cardiac Monitoring (OCM) can be one intriguing
enhancement for the next-generation video streaming plat-
forms. The rich tapestry of video and audio in streaming
not only provides the context of actions, movement, hu-
man activities, speech, etc., but it also embeds subtle cardiac
events, which have been long neglected in contemporary
video streaming systems. Uncovering such physiological
information would bring various benefits. In the realm of
remote health, physicians could remotely access real-time
cardiac data without the need for specialized equipment [3].
Similarly, in video gaming, displaying a player’s heart rate
during live streams could add a new layer of excitement and
engagement for viewers [8]. Notably, in the Paris Olympics
2024, NBC introduced heart-rate streaming to add a new
"gamifying" element for creating compelling TV [6]. This
technology could also play a pivotal role in online confer-
ences or interviews, where emotional responses (including
lies) inferred from cardiac data [53, 57] could enrich interac-
tions, making them more nuanced and meaningful. Further-
more, the potential for this technology extends into security
and fraud detection against digital impersonation techniques
like deepfakes [37, 46]. These multifaceted applications of
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OCM underscore its potential to revolutionize video stream-
ing, making it not just a tool for communication and enter-
tainment, but also a platform for health monitoring, affective
computing, emotional intelligence, and security.

However, existing online cardiac monitoring either relies
on specified hardware [7](e.g., heartbeat belt) or introduces
additional sensing modalities (e.g., Wi-Fi [38], mmWave [70],
and UWB [21] etc.) which are not typically available in
live streaming systems. These approaches suffer from extra
cost and are often misaligned with live streams. Moreover,
sensing-based approaches necessitate active transmission
of the sensing signals [47, 58], which is often impractical
to force in live streaming applications. A video streaming
system that seamlessly enables online cardiac monitoring in
pervasive contexts without additional hardware still lacks.

In this paper, we ask: Can we incorporate accurate and
robust online cardiac monitoring into a video-streaming system
without introducing additional hardware or modalities? To
build such a system, we answer the following key questions:

First, what information should we take from the video stream-
ing system to monitor the cardiac activities? Existing works
[20, 33, 39, 40, 44, 72-74, 77] on extracting heart rate from
human faces focus on remote photoplethysmography (rPPG)
which leverages solely video. These video-only solutions are
more likely to suffer from low illumination conditions, head
movement, and orientation. Recent progress in cardiac Vocal
User Interfaces (VUIs) [67] inspires us to infer heart rate
from human speech. However, audio signals are usually sen-
sitive to noise interference and lack contextual background
information, rendering them less robust in real-life scenarios
and requiring user calibration. Conceptually, video provides
detailed visual context while sound exhibits resilience to
varying light conditions and body motions. Consequently,
they offer complementary advantages to enhance cardiac
monitoring. This motivates us to move beyond video-only
or audio-only solutions, and investigate new designs to com-
bine the naturally co-existed video and audio streams.

Second, how to tackle real-world problems to make this
system robust and accurate? Unveiling the cardiac activity
from video and audio is challenging. The information is nu-
anced and easy to be overshadowed by more prominent body
movements, environmental dynamics, and/or ambient noise.
Previous works [33, 39, 40, 44, 74, 77] primarily evaluate
models on well-controlled datasets featuring static subjects
under optimized light conditions and viewing angles, which
simplifies the problems yet becomes unrealistic in real-world
settings. The task gets even more challenging when deployed
in live video streaming environments, due to the discrepan-
cies in frame rates, degraded image quality, and presence
of multiple individuals with mixed audio and video streams.
To deliver an accurate and robust system in practice, novel
techniques are desired to effectively discern subtle cardiac
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signals amidst various disturbances while combating fluctu-
ating frame rates and drifted misalignment of the streams.

Third, how to enable Service-On-Demand (SoD) cardiac
monitoring in video streaming systems? Despite the promise
of the integration, enabling SoD for users poses significant
challenges due to the complexity of modern video stream-
ing systems. These platforms vary widely, encompassing
formats such as conferences [5, 9, 11], Video-On-Demand
(VoD) [4, 10], live streaming [1, 13], etc, each with its own
technical and operational nuances. These providers must
balance the demands of real-time data processing with the
need for immediate accessibility and minimal latency while
not interfering with the original streams. At the same time,
deploying our service on edge (e.g., browsers) benefits from
preserving privacy, while getting access to the data yields an-
other challenge. One naive way is to deploy our models over
the WebRTC peers, but it lacks scalability and versatility. To
this end, we are motivated to establish a plug-and-play ser-
vice that can be seamlessly integrated into video streaming
systems, whether hosted on servers or edges.

In this paper, we present CardioLive, the first-of-its-kind
online cardiac monitoring system, that can continuously in-
fer the heart rate in video streaming systems. At the core of
CardioLive, we design a novel audio-video deep learning net-
work, CardioNet, that can effectively learn the nuanced car-
diac activities from facial regions and human voices. Specif-
ically, we combine the temporal difference network and
a frequency-aware block to model the temporal-spectrum
properties from videos. We directly exploit the raw audio
to capture the cardiac activities by emulating the natural
filtering effects of the human body. To handle the irregu-
larly sampled data, we integrate time embeddings to provide
temporal context. Finally, we fuse audio and visual features
through a multi-head temporal attention mechanism, which
synergistically combines the strengths of both modalities to
produce a robust and precise cardiac monitoring solution.

We further devise systematic solutions to deploy Cardi-
oLive as a middleware service to support the SoD online
cardiac monitoring. We introduce practical techniques to
handle issues like changing FPS and unsynchronized streams.
Through in-depth analyses of mainstream video streaming
architectures, we realize a CardioLive service with effective
data hooks and novel packet and buffer designs, which can
be easily integrated with various video streaming systems.

Extensive experiments have been done to validate the ef-
fectiveness of CardioLive. We have self-collected data through
8 different devices and 10 users. Our evaluation results show
that CardioLive achieves a mean absolute error (MAE) of 1.79
BPM and root mean square error (RMSE) of 3.25 BPM, largely
outperforming the video-only solutions by 69.2% in MAE
and 61.4% in RMSE, and the audio-only solution by 81.2%
in MAE and 76.8% in RMSE. We demonstrate CardioLive’s
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generalizability to different environments, devices, and users.
As for CardioLive service, we implement our system on two
ends, a meeting platform (Zoom) and a content provider
(YouTube), respectively. We achieve the overall throughput
of 115.97 FPS and 98.16 FPS for each platform respectively,
ensuring smooth updates without disrupting the original
streams. These results highlight the robustness and accu-
racy of CardioLive, confirming its potential for widespread
application in video streaming systems.

Contributions: We conclude our contributions as follows:
® To the best of our knowledge, we are the first to combine
video and audio for cardiac monitoring in video streaming
systems. Our solution outperforms video-only or audio-only
approaches, especially under adverse conditions in practice.
® We develop CardioNet, a novel audio-video pipeline that
can uncover the nuanced heart rate. Our experiments vali-
date the robustness against different conditions.

® We implement CardioLive as a service-based plug-and-play
middleware, that can seamlessly be integrated into main-
stream platforms for real-time streaming.

2 DESIGN SCOPE

Application Momentum: Consider a scenario where users
on platforms such as Zoom or YouTube can access real-time
cardiac monitoring. With just a single click, users see their
heart rate, providing immediate insights into their emotional
and physiological states, including what others are thinking
about, whether they are in good health, and how exciting
the game is. By online cardiac monitoring, these platforms
could significantly enhance user engagement and interac-
tivity. Particularly, CardioLive can provide unique and com-
pelling benefits in the downstream applications:

O Accessibility: In many video streaming scenarios, such as
live product demonstrations on TikTok or Zoom interviews,
using wearables or additional hardware is often impractical.
OCM can overcome this problem by leveraging modalities
that already exist within video streams, thereby increasing
accessibility for audiences and facilitating broader engage-
ment. It also promises wider dissemination of remote health,
offering device-free cardiac monitoring compared to the lat-
est work [19] that relies on earphones.

® Enhanced Analytical Abilities: While there exist alter-
native approaches for tasks including affective computing
[15, 43, 45, 66] and deepfake detection [23, 69], the cardiac
signal shows a strong correlation with them [45, 63], by cap-
turing the subtle changes in heart rate. In this context, OCM
provides an additional verification layer in a real-time and
continuous manner, allowing experts to proceed to analyze
behaviors. This analysis can help determine if someone is
lying, happy, nervous, or engaging in deceptive behavior.
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® Entertainment: Our work also presents a distinct chance
for augmented entertainment. With the rise of live streaming,
the audience can access the heart rates of celebrities, which
opens up a new world for the existing viewing experiences.

Despite the potential, there are no existing solutions capa-
ble of achieving this integration without additional hardware.
In this work, we focus on addressing this gap by leveraging
the co-existence of audio and video signals, specifically in
scenarios where a speaker is talking. This can be common
in both entertainment and telehealth use cases, including
affective computing, remote health, deepfake detection, etc.
At the core of OCM is the accurate prediction of cardiac in-
formation. Our system should robustly detect the heart rate
from the video streaming systems by hooking the video and
audio chunks. Once cardiac data is acquired, it can be further
analyzed for various downstream tasks, including affective
computing, remote health monitoring, and deepfake detec-
tion. Yet how cardiac monitoring is used for downstream
tasks (e.g., emotions, lies, etc) is not the focus of this paper.
Audio-Video Pair: Leveraging the natural co-existence of
audio and video modalities offers contemporary benefits as
follows: @ Ubiquity: Video and audio streams are the most
fundamental components in video streaming systems, while
no additional hardware is needed. ® Feasibility: Both video
and audio data contain the cardiac information (discussed in
§3.1 ). ® Complementarity: Audio and video offer different
strengths and weaknesses. Audio is less interfered with by
motion and light but is sensitive to noises. Video is more
robust to noises but will fail in various body movements and
non-optimized view angles. We will elaborate the detailed
analyses in §3.

To deploy such an OCM system, a straightforward way is

to build a self-hosted WebRTC service, which, however, does
not scale to existing video streaming systems. Therefore, for
the sake of versatility, we aim to establish a microservice to
host CardioLive for seamless integration with mainstream
video streaming platforms.
Privacy Concerns: Audio and video data are inherently
sensitive and vulnerable to privacy breaches. However, in
our proposed scenarios, privacy concerns are mitigated for
several reasons. First, the primary purpose of audio and
video data in this context is for communication. Therefore,
participants are already receiving this data during the meet-
ings, regardless of whether our system is activated or not. In
other words, all participants have consented to share their
audio and video within the video streaming applications,
without requiring extra sensitive data inputs. Additionally,
our system is implemented as a middleware solution within
existing video streaming systems. These contemporary sys-
tems are subject to stringent privacy regulations. CardioLive
will operate in compliance with these established privacy
frameworks.
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In a nutshell, the audio-video pair appears to be an attrac-
tive choice for ubiquitous and practical OCM, yet it entails
numerous challenges to build an accurate and robust multi-
modal algorithm and system. We will present our model
design in §3 and leave the system implementation in §4.

3 CardioNet DESIGN

In this section, we will present our design of CardioNet. We
will first describe the underlying fundamentals of inferring
cardiac activity from video and audio. Then, we will illustrate
our design of model.

3.1 Kinetics for Cardiac Learning

Principles: Since blood vessels circulate blood throughout
the body, including the face, lungs, and throat, we can infer
heart activity in these areas through video and audio analysis.

In video streams, when light hits the skin, subtle color
changes from pulse-induced blood flow can be captured, as
described by the Dichromatic Reflection Model (DRM) [50].
We define the Domain of Interest (DOI) of the facial areas as
IT € RNoXCXHpXWr "and 11, ; € I denotes the RGB pixels at
the i-th row and the j-th column. To bridge the color with
RGB values, we model the spectral relationship as:

Y, () = I1(f) * A(f), (1)

where I(f) is the illumination spectral components, * is the
convolution operation, and A(f) is the reflection modula-
tor, comprising specular reflection As(f) and diffuse reflec-
tion A4(f). Specular reflection occurs at the epidermis level,
while diffuse reflection penetrates into the hypodermis, re-
flecting off capillaries and blood vessels, encapsulating phys-
iological spectrum H(f). We further decompose I(f) and
As(f) into static and dynamic components, where dynamic
components are denoted as u(H(f), O(f)) and v(H(f), O(f)),
respectively. O(f) is a set of irrelevant signals. p(-) and v(-)
are transfer functions without analytic expressions. Our goal
is to infer h(t) from II, where h(t) is the temporal counter-
part of the spectral representation H( f).

Speech is a complex auditory phenomenon that carries
biological information. The airflow is produced from the
lungs, which is then modulated by the vocal folds within
the larynx to generate sound. This sound is further shaped
by the movements and positions of the articulatory organs,
such as the tongue and throat. Formally, the speech signal =
can be formulated in the frequency domain as

Y=(f) = L(f) - R(f), @)

where L(f) is the sound energy source. R(f) is an acoustic
filter creating formant, affected by the vocal tract’s physical
attributes. Blood flow in surrounding vessels, particularly
carotid arteries, influences the acoustic properties [67].These

CardioLive

cardiovascular dynamics are encapsulated in the model by
integrating the physiological signal H(f) into R(f).
Observations: Existing video-based solutions [20, 39, 40, 61,
72, 77], though many, are trained on small datasets with con-
trolled environments, e.g., PURE [51]. Their performances
will degrade greatly when training and testing on more com-
plicated datasets, e.g., MMPD [54]. As can be seen from Fig.
2, the existing video-based solutions cannot effectively cap-
ture the cardiac semantics across different body movements
and light conditions. These results present a grand challenge
for cardiac learning. Meanwhile, different light conditions
and body movements will degrade the performance from the
video-based approaches, where audio can help [67]. There-
fore, our goal is to design a dedicated audio-visual network
to extract those motions.

3.2 Model Design

Given the underlying cardiac motions, we aim to devise a
learning approach to extract h(t). As shown in Fig. 3, the DOI
pairs, i.e., frames IT and audio clips =, will be fed into video
encoder E, and audio encoder E,, respectively, to acquire
the latent representation. Then we devise a fusion network
to aggregate the two modalities.

3.2.1 Video Branch Design. We will first introduce E,,.
Temporal Differential Block (TDB): The input video frames
IT will first be processes as, i.e.,

I, =10 - H,{;l. (3)

Note that in online learning, we only have past information,
so we perform backward differentiation. The key idea is, we
treat the psychological activities as tiny local "motions". It
efficiently captures the changes between consecutive frames
[60]. Furthermore, TDB plays a crucial role in isolating dy-
namic features while suppressing static components present
in the video data, as stated in Eq. (1). Thereafter, they are
fed into convolution networks and upsampled to meet the
length of video features. It is also imperative to capture the
static information inherent in the video frames. To this end,
we integrate a parallel pathway to process the original video
frames, allowing for a more comprehensive understanding
of the environment. We then introduce lateral connections
to facilitate fusion of static and dynamic information.

Motion-Aware Aggregation (MAA): The above design in-
corporates temporal information with static and dynamic
modeling. After lateral fusion, we pass the intermediate la-
tent to the bottleneck block. We recognize the importance of
spatial modeling in mitigating the motion noise from head
movement. Unlike video recognition tasks, where the rela-
tive location of the pixel is vital, we care more about how to
track the variations of these pixels over time. To this end, we
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.

introduce a self-attention mechanism for frame-wise aggre-
gation between consecutive frames. Our goal is to establish a
mapping between temporal pixel variations and consecutive
spatial information. Given the latent space I1 e RTXCXHXW

we query the one pixel at time ¢, i.e., H ; and compute the
attention with previous frame,

N N T
t t-1
Hi,j (HiiAi,jiAj)

Vi

p! = Softmax (4)

Here Ai = Aj = k/2, which is the perception grid size. di is
the dimension of I/}, jeaj- P captures the inter-frame pixel

displacement, drawing attention to motion while enhancing
temporal features between frames. Subsequently, we can get
the weighted sum of temporal neighbor frames and aggregate
with a query to enhance the original pixel:

Iv]lt,j = Ht + p H1+Al NELYN (5)

This mechanism scrutinizes pixel displacements across con-
secutive frames, akin to tracing the path of movement within
a sequence of images. Each pixel’s attention weight encapsu-
lates its significance in depicting motion, allowing the model
to recognize subtle shifts and fluctuations over time.

Frequency-Aware Block (FAB): After applying motion
attention aggregation, we acquire the enhanced feature e
RTXEXHXW Our previous focus has been on modeling video
dynamics in the temporal domain. These are very effective
designs for cardiac time series learning. Moreover, given
the intrinsic property of h(t), which turns out to be a quasi-
periodic signal, it becomes imperative to incorporate fre-
quency features into our analysis. Here, the term "frequency”
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does not merely refer to the spectrum of color space within
the video; rather, we aim to capture the underlying frequency
variations of pixels over time. Inspired by DTF [42], we at-
tempt to explicitly incorporate FFT in our design. For each
pixel IT;, Jj € RT*C, we apply FFT along the temporal dimen-
sion to acqulre the feature spectrum ¥y y (f)- To capture the
frequency information, we introduce a learnable frequency
filter ¥ (f) € RN, We use IFFT to get the modulated tem-
poral feature. With FCB, we can enlarge the receptive field
and profile cardiac time series with frequency constraints.
Irregular Sampled Time Embedding: Another challenge
of online cardiac learning is the fluctuating FPS. To this end,
we introduce the timestamp feature to handle the irregular
sampled time learning Technically, we can acquire the set of
timestamps {tl} for each frame. We incorporate a times-
tamp embedding Et design and fuse it with @, (IT). Specifi-
cally, we employ a frequency embedding scheme, which com-
putes triangle embedding based on a geometric progression
of frequencies up to f;,,. We first derive a set of frequencies
with the size of embedding dimension N,,, i.e.,

wk—ex &
= P N

tq

' log(fm)) , (6)
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where k = 1,- - - Ny, /2. Then the angle for each timestamp
i is given by 95‘ = t; - 0¥ - 2. Finally, the timestamps are
embedded through trigonometric encoding by concatenating
sine and cosine values for each angle.

3.2.2 Audio Branch Design. We then introduce the design
for the audio encode E,. As discussed in §3.1, human speech
is modulated by the time-varying filter R(f). And the car-
diac series is encapsulated in R(f). Inspired by this filtering
process, we opt to emulate it within our design. We target
directly processing raw audio in our case. We will justify the
rationale first, followed by our design.

Raw Audio: Traditional audio-based learning often lever-
ages mel-spectrogram, a common practice for tasks like
speech recognition. However, this method may not be suit-
able for our task. Our predictions, h(t), manifest as quasi-
periodic signals, ideally shown as straight lines on a mel-
spectrum. But because cardiac activities are variable, these
lines will exhibit randomness on a temporal-frequency map.
Also, the location of the "straight" line has physical mean-
ings, rather than a simple pattern. Therefore, we resort to
learning from the raw audio signals directly. The key insight
is, the process of producing speed from our vocal organs is
composed of several acoustic filters, as indicated in §3.1. We
can simulate the effect of filters and incorporate them in our
design.

Temporal-Frequency Filter (TFF): The temporal format
of Eq. (2) can be rewritten as £(¢) = I(t) * r(t), where &(t)
is the speech signal. [(t) represents the source of the sound
while r(t) is combination of source filters. To this end, we
adopt the SincNet [48], which can be expressed as,

ri(t,0) = foZ sinc(Zﬂfi’e2 1) — Zfi’e1 sinc(Zﬂfi’e1 1), (7)

i,02 and l.’gl denotes the two cutoff frequencies. We can treat
the two cutoff frequencies as learnable parameters. We then
perform convolution between r;(t) and raw audio &(t). They
will be fed into 1D convolution blocks for feature extraction.

3.2.3  Fusion Block Design. Until now, we have handled the
video feature O, (II) and audio feature O, (Z). We now
present the design of the fusion network. We opt for the
late-fusion scheme, as the relationships between audio and
cardiac activity, as well as video and cardiac activity, are not
initially apparent. Within the fusion block, we aim to address
two challenges: 1) aligning the audio and video features
along the temporal domain, and 2) handling the sampling
rate mismatch between the audio and video features. To do
so, we propose a multi-head temporal attention fusion block.
Subsequently, the fused feature will be passed through linear
fully connected layers. To achieve this, we adopt a temporal
attention-based fusion scheme. Technically, we exploit video
features as the query, and audio features as the key and value.
The fused feature O (11, £) will be fed to the output layer.
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3.24 Loss. We include three types of loss functions, i.e.,
focal loss, frequency loss and similarity loss,

La=a-Lys+f- Lim+y- -Efreq, (8)

where , f and y are weights to balance the loss items. The
focal loss Lgjs offers a more robust framework for keeping
peaks in the physiological signals [49]. The similarity loss
Lim represents the extent of alignment. Additionally, as we
are learning quasi-periodic signal, we incorporate spectral
loss Lfreq as well by calculating the MSE of FFT.

4 CARDIOLIVE DESIGN

In this section, we will introduce the design of CardioLive. We
will introduce the design goal of CardioLive in §4.1, followed
by our detailed designs of service in §4.2 and §4.3. We will
introduce the preprocessing in §4.4.

4.1 Design Goal

Modern video streaming systems are complicated, and in-
tegrating OCM into them is non-trivial. As shown in Fig. 6,
the content is sent through cloud servers spanning across
different locations globally. Besides running the data center
and cloud computing, these video streaming systems offer a
range of application services, such as content summarization,
transcriptions, and Al-driven interactive features. Note that
for content providers like YouTube, Netflix, and many VoD
providers, integrating new features is relatively straightfor-
ward because they can preload resources in their data centers.
However, this does work well with streaming systems with
live content generation and interactions. On the other hand,
deploying cardiac monitoring on edge devices is also valu-
able. Users will be concerned about how the sensitive data
are communicated over the network.

Therefore, to achieve SoD cardiac monitoring service, we
need to both consider deploying the cardiac monitoring
services on the edge ends, e.g., browsers, and application
services. Notably, direct access to data that manufacturers
possess is often restricted by stringent privacy regulations
affecting external developers. To this end, we aim to package
CardioLive into a service, which both end users and man-
ufacturers can readily access. At a high level, we are not
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Figure 7: Data Hook Design.

concerned about specific implementations on specific plat-
forms, but aim to develop CardioLive as a microservice. We
utilize data hooks to capture video and audio streams, orga-
nizing them into buffer queues as data packets, which will
be fed to the inference engines, as detailed below.

4.2 Buffer Design

Data Hook: We will first introduce data hooks to get the
video and audio streams, namely onVideoDataReceived()
and onAudioDataReceived(). Meeting platforms like Zoom
usually support in-app bots that virtually participate in calls.
We can leverage the bots to access the raw data streams,
as shown in Fig. 7a. Meanwhile, increasingly more video
streaming systems are based on web pages, e.g., YouTube,
Bilibili, etc. Direct accessing the video streams of this plat-
form is rather complicated and violates the policies. To this
end, we leverage WebGL and WebAudio that exist in mod-
ern browsers to get the data streams, as shown in Fig. 7b.
The browsers usually provide the Document Object Model
(DOM), a programming interface to manipulate the struc-
ture, style, and content of web content. Our service will first
access the canvas, an element for graphics on a web page,
through DOM. The canvas offers a bitmap where each pixel
can be individually manipulated. We get the rendering con-
text through WebGL, which operates as a rendering context
of canvas using the underlying GPU. We create an offscreen
canvas that is rendered off the main thread and read the pix-
els through WebGL, preventing it from interfering with the
normal Ul updates. Meanwhile, we capture the audio from
the video element through WebAudio, a versatile framework
to handle audio operations on the web. We record the times-
tamp of the audio and video as well. Through the data hook,
we can acquire the video and audio streams. Then we will
construct them into data packets and buffer queues.

Data Packet: Normally, audio and video are encoded in sepa-
rate ways. In meeting platforms, the video frames are usually
encoded in YUV format. They are designed for the best trans-
mission efficiency. Encoding the data in YUV space allows
fewer total bits of space in a video stream for the colors to be
shown. To recover the original RGB streams, we have first to
decode the YUV streams. To reduce the cost of decoding, we
adapt a streaming-based decoding pipeline from GStreamer
[2]. We set the appsink property for receiving the RGB data
and assign appsrc for handling YUV encoding. We set the
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Figure 8: Packet and Buffer Design

transformation in asynchronous mode so that the incoming
frames will not conflict with the current operations. After
that, we will construct the collected frames in buffers.
Then we feed the video-audio pair into the forwarding
packets. For audio and video streams, we apply the same
packet format, which contains a unique header, an identifier,
the data size, timestamps, and the encoded payload data, as
illustrated in Fig. 8. The unique header is designed to judge
whether the packet is correctly constructed and not mixed
with other packets. The identifier is assigned to indicate
whether it is audio or video data packets. We embed the
received timestamps to denote the sequence of the video and
audio, which will be further used for synchronization.

4.3 Service Design

We abstract our system as a plug-and-play service. Our ser-
vice first gets the hooked video and audio packets as the
input. The data will be preprocessed and fed to the inference
engine for output. Our design overcomes the two challenges:
fluctuating FPS and unsynchronized audio and video streams.
Changing FPS: The fluctuating FPS will lead to two sub-
problems. Initially, the video streaming systems will ideally
have 30 FPS but in reality undersampled at the receiver’s end,
as illustrated in Fig. 9, with some outliers present as well.
Additionally, the frame rate is not constant, resulting in a
varying number of frames within a given window. However,
our model assumes a fixed 4-s input, with 120 frames of video
(30 FPS) and 32000 samples of audio (8kHz). In other word,
we have to adapt the real input size to the model. To this end,
instead of padding empty frames at the end, we duplicate one
single frame circularly. For instance, if the actual FPS is 25,
we insert an additional identical frame after every 5 frames to
approximate a smoother transition to 30 FPS. Any remaining
gaps at the end of the sequence are filled by repeating the
last frame. As for overlarge FPS, we downsample the frames.
For the audio clips, as 8kHz is much lower than the typical
sampling rates (usually 32kHz or 44.1kHz) in modern video
streaming systems, we can concatenate the received audio
chunks and safely downsample them to 8kHz.
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Audio Video Synchronization: The audio-visual misalign-
ment is a more severe issue than changing FPS. As we are
hooking audio and video from separate channels, they are
likely to lose synchronization with the increase of time. As
can be seen from Fig. 7b, the starting time of the audio and
video will be misaligned quickly with accumulating drifts.
To overcome this issue, we develop a scheme to ensure the
audio and video chunks are synchronized before sending
to the inference engine. Given the audio and video streams
Sq(t) and S (1), they will be extended to the buffer queues
Qq4(t) and Q,(t), respectively. We also maintain ¢, and ¢, as
the starting time of audio and video chunks, respectively.
We denote At, = tk — ¥ as the temporal drift between au-
dio and video streams at k-th trial. To mitigating the con-
tinuously increasing At,, we align the start time at each
step k as, tftart = max(ts, tz’f ), when At,, is larger than the
threshold €;. We use €; = 0.3s. Then the ending time will
be determined by tfn 4= tftart + t,y, where t,, is the win-
dow lengths. Note that we are adopting a sliding window
scheme, with window length t,, and step length t;. For the
next window, the start time will be updated by finding the
timestamp closest to, i.e., t**' = t& + ¢, and t5*1 = 5 + ¢,
Meanwhile, we will pop the items that have been processed
from the buffer queues, i.e., Qq(t) = Qu(t)\{S. ()|t < tk*1}
and Q,(t) = Qu(t)\{Su(t)|t < t**'}. We then feed the syn-

chronized pairs for inference.

4.4 Preprocessing

In this section, we will discuss the preprocessing pipelines.
We use OpenCV face detector to find the faces. We also per-
form voice activity detection to segment the talking period.

CardioLive
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Figure 11: Experimental Setups

Additionally, we need to separate multiple persons, if any,
and match their audio and videos.

Multi-person Separation: We deduct the more challenging
multi-user case into the single-user case by separating them.
Initially, face detection can determine the number of partici-
pants. To ensure facial resolution, we focus on the largest N '
faces, disregarding the others. Similarly, we will only con-
sider N¢ speech clips with the largest power spectrum when
separating audio. For efficiency, we choose Ny = 2 in our
paper. At this stage, the separated faces and speech segments
may not correspond to each other. To address this mismatch,
we proceed with audio-visual matching as described next.
Audio-Visual Matching: To realize the matching between
speaking clips and facial hints, we adopt a cross-attention
scheme [31, 56]. Specifically, after the encoders, we get two
features M, and M,. These features are expected to encap-
sulate relevant speaking activities by employing temporal
encoders [14, 30]. To fuse the audio and video features, The
audio features M, are integrated with the video data by treat-
ing M, as the target for querying through an attention frame-
work. Conversely, the video features M, interact with Q,,
representing the audio query sequences. The outputs are
concatenated together along the temporal direction.

5 EVALUATION

In this section, we systematically evaluate CardioLive. We
perform comparison studies with the state-of-the-art (SOTA)
video-based solutions and audio-based solutions. We mainly
leverage our self-collected dataset. We use the following
metrics to evaluate the accuracy of the model: Mean Ab-
solute Error (MAE), Root Mean Square Error (RMSE), and
Mean Absolute Percentage Error (MAPE). Data Collection:
There is no existing dataset that can fit our requirements,
with audio-visual pairs and clear heart rate ground truth.
Therefore, we self-collect the dataset through 8 commod-
ity devices which span multiple mainstream platforms (iOS,
Android, Windows, Mac), major brands, and device types
(smartphones, tablets, laptops, and webcams) released be-
tween 2018-2023: Logitech C930 Webcam, OPPO Reno 2Z,
Redmi Note 5, Honor 20i, MacBook Air M2, iPad 2018, iPad
2023 Pro, and iPhone 14. We leverage Polar H10 [7] to collect
the ground truth. Our dataset comprises recordings from 10
users of diverse genders and regions. They are requested to
read 10 materials [52], counting for 2,800 words. Each round
lasts for 40 minutes. They wear the heartbeat belt when they
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Figure 13: The performances for different angles.

are reading. We do not restrict users to a fixed distance from
the recording devices. We leverage a tripod along with a
ring light to cast different light sources on the users. We
collected a total of 84,666 data clips, which are clipped into
facial regions with 4-s windows. We resize the video frames
to 72x72x3 and the audio is resampled to 8kHz. The missing
frames will be duplicated adopting the same scheme as §4.3
mentions. We gain IRB from our university board. We also
make use of two publicly available video-only datasets: PURE
[51] and MMPD [54] to validate the video-only solution.
Software: We implement CardioNet through Pytorch 2.4.0.
The model is trained via a single-card NVIDIA A100 80GB.
We train the model with the learning rate of 1e-3, AdamW op-
timizer, batch size of 16, OneCycle scheduler. We use Pytorch
JIT to compile the model. We write 2000+ lines C++ code to
implement the service in Zoom and 1500+ lines JavaScript
code for developing the service in the extension.
Deployment: We propose two deployment paradigms, web-
based and app-based. For the web-based one, we develop
a browser extension that operates CardioLive in the back-
ground, which continuously captures audio and video data
for processing, with results displayed on a canvas within the
interface. In the app-based deployment, we register a bot in
compliance with the policies of the video streaming com-
panies. This bot joins the sessions as a member, similar to
other participants, with the consent of all members. The data
hook extracts audio and video towards inference engines.
The processed results are delivered through a notification
system. Notably, the inference can be performed either on
the company’s cloud server or locally on the user’s device.
In our real-world evaluation, we perform inference on the
user’s device (Xiaoxin 16 Pro with AMD Ryzen 7 5800H),
demonstrating the robustness and efficiency of our model.

5.1 Comparative Study

We compare our CardioNet with various baselines. We choose
the SOTA video-only baselines: TS-CAN [39], DeepPhys [20],
PhysNet [72], EfficientPhys [40], RhythmFormer [77], POS

[61]. The last one represents the signal processing based
rPPG approaches. We also reimplement VocalHR [67], the
recent work that employs human speech for detecting heart
rate. Through this study, we will justify our superior perfor-
mances using both audio and video modalities.

Distances: We first experiment with different distances,
ranging from 0.5m to 2.5m. We apply the logarithmic scale
to each graph, with the base of 10. As shown in Fig. 12, while
the error increases with distance for all methods, our ap-
proach consistently outperforms other baseline models at
all tested distances. CardioNet achieves a MAE of just 1.40
BPM at 0.5m, significantly lower than the SOTA video-based
baseline, i.e., RhythmFormer, by 73.7 %, and 96.7% lower than
the worst-performing model, i.e., POS. Meanwhile, the audio-
based model VocalHR has a MAE of 8.12 BPM at the same
distance, which is 82.8% higher than ours. Even at the maxi-
mum testing distance of 2.5 meters, CardioNet is still 63.1%
better than RhythmFormer and 77.9% better than VocalHR.
This demonstrates the fusion of audio and video signals in
CardioNet significantly enhances the overall performance.
Besides, we observe the identical patterns of MAE, MAPE
and RMSE, we will mainly report MAE for simplicity.
Angles: We evaluate our model across a range of angles from
0° to +60° at a distance of 1 meter, as shown in Fig. 13. As the
viewing angle increases, video-based methods suffer from
significant performance degradation due to reduced visibility
of facial features. However, CardioNet, through audio-visual
fusion, maintains robust performance across all angles. While
the video quality deteriorates with extreme angles, audio
signals remain largely unaffected by viewing angles. Even
at extreme angles like +60°, where video signals typically
falter, our model achieves up to 38.9% lower MAE compared
to baseline models, highlighting its superior resilience in
challenging conditions. This result underscores the critical
role of the audio modality in compensating for the loss of
visual information at extreme angles.

Noise Levels: We test heart rate estimation under noise
levels from 30 dB to 38 dB. As in Fig. 14, increasing noise
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leads to higher absolute error. Nonetheless, CardioNet con-
sistently outperforms the SOTA audio-only model VocalHR.
This can be attributed to our temporal frequency filter de-
sign and the video modality which provides complementary
information that remains stable under acoustic noise. For
instance, at 30 dB, our model achieves a MAE of 1.25 BPM,
significantly lower than VocalHR’s 8.64 BPM, and maintains
this advantage even at 38 dB. The fusion network learns
to adaptively reduce reliance on noisy audio features while
leveraging more stable visual cues. The CDF curves show
that CardioNet achieves higher cumulative probabilities at
lower error thresholds, indicating its resilience to noise.
Noise Sources: We analyze the impact of noise sources
such as rain, music, and TV shows in Fig. 15. CardioNet
demonstrates strong noise resilience, particularly with rain
noise, where it significantly outperforms VocalHR, achieving
a MAE of just 1.94 BPM compared to 12.93 BPM. Even with
more complex noise like music and TV shows, our model
maintains lower MAEs, showcasing its robustness in diverse
acoustic environments. This highlights the effectiveness of
video modalities when facing the ambient noises.

Body Motions: Body motion can significantly impact the
performance of heart rate detection models. To validate
the robustness of our approach under different body mo-
tion scenarios, we evaluate the model in three typical body
movements: walking, left-right (LR) rotation, and up-down
(UD) rotation, as in Fig. 16. Despite the motion artifacts,
CardioNet maintains robust performance, achieving an MAE
of 1.35 BPM in the UD scenario, and consistently outper-
forms baselines by significant margins in all motion types.
Our model benefits from the unique design of the motion-
aware aggregation and temporal differentiation block. These
prove the robustness of our model against body motions by
effectively employing video plus audio modalities.
Video-only Solutions: We evaluate our approach on open
datasets that contain only video data. As shown in Fig. 17,
our method consistently ranks among the top among rPPG-
based solutions. We achieve MAE errors of 2.09 and 1.12
BPM on PURE and MMPD datasets, respectively. It is im-
portant to note that during evaluation, we disable the audio
branch of CardioNet. This ensures that our video encoder
independently captures heart-related activities. In scenarios
where no audio is available (e.g., during silent periods), our
model effectively transitions into a video-only solution.

5.2 Micro Benchmarks

Different Light Conditions: We assess our model under
varying lightness levels from 0.3702 to 0.3259 in Fig.18a, by
adjusting the ring light. As lightness decreases, the MAE
increases from 4.85 BPM to 8.16 BPM. This trend suggests
that poorer conditions impact accuracy due to the reduced
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visibility of facial features. However, the model remains suf-
ficiently robust, indicating that while lighting plays a role,
the audio-visual fusion helps mitigate the negative effects.
Different FPS: We examine the model across various video
frame rates (FPS), ranging from 30 FPS to 15 FPS, as shown
in Fig.18b. We interpolate the frame rate by adopting the
principles discussed in §4.3. The model performs best at 30
FPS with an MAE of 1.75 BPM. Even at lower frame rates,
particularly 15 FPS, the MAE increases to 4.56 BPM, while
still remaining in the low level. This robust performance is
achieved through our frame interpolation scheme and the
audio branch’s ability to provide continuous cardiac infor-
mation regardless of video frame rate. Also, our temporal
differential block and irregular sampled time embedding
block are equally vital to handle varying frame rates.
Different Quality of Image: We analyze the model’s perfor-
mance under different video compression qualities, from 100
(highest quality) to 40 (lowest quality), as shown in Fig.18c.
Interestingly, the MAE does not consistently worsen with
lower quality. At extreme compression levels, the model
achieves the lowest MAE of 2.49 BPM, potentially due to
smoothing effects that enhance key facial features. This sug-
gests that while high compression degrades visual informa-
tion, moderate to high levels of compression might benefit
the model by reducing noise.

Different Environments: Our model’s performance is eval-
uated across various environmental settings, including Of-
fice, Outdoor, Conference Room, and Laboratory, as shown
in Fig.19a. The model performs best in the Office environ-
ment with a MAE of 1.40 BPM. Notably, the latter three
environments are not in the training set, yet the model main-
tains strong performance, demonstrating that our feature
extraction generalizes well to unseen conditions.

Different Face Filters: We test various facial filters, includ-
ing Smooth Face, Tint Skin, Adjust Brightness, Add Contrast,
and Sharpen Face, as shown in Fig.19b. The Tint Skin fil-
ter yields the best performance with an MAE of 2.38 BPM,
while a more aggressive filter like Sharpen Face achieves an
MAE of 8.69 BPM. It shows our model effectively handles
appearance changes while maintaining accuracy.
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Different Devices: We evaluate our model on various de-
vices under inter-device and cross-device conditions, as shown
in Fig.20. For inter-device testing, the average MAE is ap-
proximately 2.95 BPM. In cross-device scenarios, the average
MAE is around 8.07 BPM. While there is a drop in accuracy,
the model still delivers acceptable performance across dif-
ferent hardware platforms. This suggests that despite some
variability, the model remains robust and capable of provid-
ing reliable heart rate estimates on a wide range of devices.
Different Users: We evaluate our model’s performance
across a diverse set of users in Fig.21. Our model’s user gen-
eralization capability stems from learning universal cardiac
patterns rather than user-specific features. The temporal-
spectral modeling captures fundamental physiological char-
acteristics that are consistent across individuals. Under inter-
user conditions, the average MAE is about 1.93 BPM. In
cross-user scenarios, the model still performs reasonably
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well, with an average MAE of 7.53 BPM. Despite the diver-
sity, the model maintains a usable level of accuracy, under-
scoring its generalizability across different user groups. This
demonstrates that our feature extraction pipeline effectively
captures device-independent cardiac patterns.
Multi-person Scenarios: We evaluate the multi-person
scenarios to justify the effectiveness of our preprocessing.
We set the maximum number of people to be separated as
two and crop the face region to a size of 72X72 pixels. In our
test, two users read materials simultaneously while sitting
next to each other. We apply the facial and sound separation
and match their audio and face regions. The test results
show an MAE of 7.83 BPM and 8.13 BPM for each person,
respectively. Although we observe some performance drops,
our method still effectively distinguishes between the two
individuals. Notably, the heart rates of the two people vary
over time, with average heart rates of 76.17 BPM and 68.55
BPM, respectively ,showing our system can track distinct
physiological states simultaneously.

5.3 CardioLive in the wild

In this section, we will evaluate how CardioLive works as
a service. We assess the service on two ends: the meeting
platform and the online content providers.

Meeting Platforms: We choose Zoom as one of online
meeting platforms, which provides the external developers
the SDK to acquire access to the raw data. The average FPS
is 28.4. We exploit the data hooks to acquire the streams and
leverage buffer queues to hold the packets, as described in
§4.2. The model consumes on average in 850ms on CPU. We
choose a step size of 1s, and a window size of 4s. It means
every second, we feed the 4-s windows for inference. The
overall system latency averages 1.03 seconds, as depicted in
Fig. 22b. Notably, latency was primarily elevated at the start
due to the initial model warm-up period [36]. This means
our systems can run inference in real-time. Furthermore, we
calculate the throughput of the whole system. We measure
the time since the last update of heart rate. As we are feeding
4-s window of video and audio frames, the throughput is
calculated as the volume of video and audio data processed
per update period. As in Fig. 22b, the average throughput of
the system is 115.97 FPS, which is prominently larger than
the common video FPS. It means that our systems can hold
the service robustly without any freezes.

Online Content Providers: Online content providers such
as YouTube often host their services in the web browser.
We implement such a service in a Chrome extension. We
employ the data hook developed from WebGL and WebAudio
to acquire the streams. The average FPS is 26.97. The overall
latency of our service is 1.23s, comparable to our step size
1s, as can be observed from Fig. 22a. Meanwhile, the average
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throughput is 98.16 FPS, with a maximum throughput of
114.41 FPS. These results also justify our service will run
smoothly in the extensions.

6 RELATED WORK

In this section, we will summarize the existing works.

Cardiac Monitoring: Cardiac information is crucial for
health monitoring, affective computing [26, 68] and decep-
tion analysis [16]. Except electrocardiograms (ECGs) and
CT scans [3] that are prohibitively expensive and cumber-
some for everyday use, recent advancements have focused on
more portable solutions. Earable-based systems [17, 19, 27]
allow earpieces to detect cardiac information, but they either
need specific probing signals or custom hardware, limiting
their widespread adoption. Similarly, wearable solutions ne-
cessitate constant wear, which is not practical for all users.
Wireless technologies, including Wi-Fi [38], mmWave [70],
and UWB [21], etc, are constrained by specific hardware
which is not commonly available in video systems . Solu-
tions using active acoustic sensing [47, 58, 59, 75] with smart
speakers rely on pseudo-inaudible signals, which can be in-
trusive to human hearing and increase hardware burden.
Video-based solutions use optical means to measure blood
volume changes in tissues. Signal processing [22, 34, 61, 62]
and deep learning [20, 33, 39, 40, 44, 72-74, 77] techniques
have been developed to enhance these methods. Yet these
solutions are sensitive to low light conditions, head/body
movements, and typically perform poorly outside controlled
environments. VocalHR [67] proves the potential of extract-
ing heart rate from human speech. Although it leverages
human speech effectively, it is limited by range, requires
pre-calibration, and cannot distinguish multiple individuals.
Differently, CardioLive is the first to combine the complemen-
tary and naturally co-existing audio and video modalities
in online video streaming systems. Our video design incor-
porates temporal-frequency co-design and motion-aware
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aggregations for the first time in OCM to mitigate the light
and body movement influence. The audio module employs
the temporal acoustic filter for OCM. These designs are in-
novative and contribute to our performances.

Video Streaming System: Video streaming systems have
gained immense popularity due to their vast libraries of on-
demand content, user-generated videos, and live streaming
capabilities, catering to diverse viewer preferences, includ-
ing YouTube, TikTok, Zoom, etc. They can be further cate-
gorized into VoD systems, live streaming systems and video
conferencing systems. Research efforts have been devoted to
communication protocols [24, 29], adaptive rate streaming
algorithms [35, 64, 76], online learning [28, 32, 55, 71], etc.
None of these works explore adding cardiac monitoring into
modern video streaming systems. In contrast, CardioLive
stands out as the first work that creates a middleware service
of OCM that can be seamlessly integrated into mainstream
video streaming systems.

7 DISCUSSION AND FUTURE WORK

Audio-Video Pair: In our primary application scenarios
(e.g., live streaming, online meetings, etc), audio and video
naturally coexist. In practice, only video data is available in
some situations, where CardioLive can be easily adapted to a
video-only solution. Such periods can be detected through
mature voice activity detection techniques [65]. Our results
shown in Fig. 17 have demonstrated that CardioLive also
performs well in video-only scenarios. CardioLive not only
introduces a novel approach to OCM by utilizing audio-visual
pairs for the first time, but also integrates these capabilities
into a practical system with flexibility and robustness.
Impacts on Original Streams: Integrating additional ser-
vices into standard streaming platforms has been a bottleneck
for many previous solutions [18, 25, 41]. In CardioLive, we
address this challenge with a dedicated design of data hook
and middleware service. Our approach ensures that these ad-
ditional services are isolated from the original streams. With
offscreen canvas, which operates independently in the exten-
sion, we avoid disrupting the original content. In meetings,
our data hook duplicates data to the inference engine in-
stantly, seamlessly, and without affecting the main video and
audio streams. Our evaluations demonstrate that CardioLive
operates without causing any disruptions or interference to
ongoing streams.

Equality and Accessibility: CardioLive is designed for
equality and is devised to be flexible and adaptable, allowing
it to be integrated into any platform without the need for spe-
cialized hardware. This significantly increases accessibility,
making the technology available to a wider audience. More-
over, while companies can promote this service on cloud
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platforms, CardioLive is crafted to ensure democratized ac-
cess, preventing any hidden biases or preferential treatment.
By enabling audiences to independently initiate the service,
CardioLive reduces the likelihood of companies manipulating
the system for economic gains by altering the model.

Use of Deep Learning: The relationship between video-
audio information and cardiac activity is inherently implicit
and complex. We evaluate our results against signal process-
ing approaches in Fig. 12 and Fig. 13, where our performances
are significantly better. And our system evaluation validates
real-time monitoring without introducing large latency. We
identify the exploration of combining signal processing with
increased explainability as a direction for future work.

8 CONCLUSION

In this paper, we envision the attractiveness of Online Car-
diac Monitoring (OCM) in video streaming and present Car-
dioLive, the first-of-its-kind system to fuse both audio and
video streams for online cardiac monitoring in video stream-
ing systems. We devise an effective audio-visual network
that can robustly and accurately unveil the nuanced cardiac
activities, achieving an average MAE of 1.79 BPM and out-
performing the video-only and audio-only solutions by 69.2%
and 81.2%, respectively. Furthermore, we design and imple-
ment CardioLive as a plug-and-play microservice that can
seamlessly be integrated into mainstream video streaming
systems. We believe our work will significantly enhance the
entertainment and healthcare value of video streaming and
inspire a new direction in this field.
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