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Abstract
The rise of AIGC has revolutionized multimedia processing, in-
cluding audio applications. Room Impulse Response (RIR),
which models sound propagation in acoustic environments,
plays a critical role in various downstream tasks such as speech
synthesis. Existing RIR generation methods, whether based on
ray tracing or neural representations, fail to fully exploit the
temporal dynamics inherent in RIR. In this work, we propose
a novel method for temporal modeling of RIR through autore-
gressive learning. Our approach captures the sequential evo-
lution of sound propagation by introducing a multi-scale gen-
eration mechanism that adaptively scales across varying tem-
poral resolutions. Extensive evaluations demonstrate that our
approach achieves respective T60 error rates of 4.1% and 5.3%
on two real-world datasets, outperforming existing RIR genera-
tion methods. We believe our work opens up new directions for
future research.
Index Terms: human-computer interaction, room acoustics,
speech processing, room impulse response

1. Introduction
The rapid advancement of Artificial Intelligence Generated
Content (AIGC) has transformed digital media production,
enabling highly realistic multimodal content. Among these
modalities, audio plays a vital role, as it conveys spatial and
contextual cues in applications like virtual reality and speech
recognition [1, 2]. At the heart of achieving such auditory real-
ism lies the accurate modeling of acoustic environments [3, 4],
which hinges on capturing how sound waves interact with phys-
ical spaces. These interactions are mathematically encapsulated
in Room Impulse Responses (RIRs), which characterize the re-
verberation, attenuation, and diffraction of sound from a source
to a listener. RIRs serve as the acoustic “fingerprint” of a space,
enabling virtual sounds to mimic real-world propagation be-
havior [5]. Therefore, accurate and robust generation of RIRs
arouses heated explorations.

However, traditional RIR estimation methods face signifi-
cant limitations. Wave-based or ray-based approaches, such as
finite-difference time-domain simulations [6, 7], often demand
computationally expensive calculations and precise knowledge
of room geometry and material properties. While data-driven
methods leveraging machine learning have shown more promise
[8, 9, 10, 11, 12, 13], the intrinsic temporal features of RIRs,
critical for modeling physical reflections and reverberations
over time, have been long neglected. Some recent methods
[14, 15, 16, 17] leverage neural representations, yet their model-
ing highly depends on the room geometry. The lack of temporal
modeling renders these solutions with limited performance.

Inspired by the recent success of large language mod-
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Figure 1: The multi-resolution generation process of RIR

els (LLMs) [18], which is largely attributed to autoregressive
frameworks that predict the next token based on prior context,
we adapt this sequential modeling paradigm to RIR generation.
RIRs are essentially time-domain signals that describe the tem-
poral propagation of sound as it interacts with surfaces in a
room. This temporal progression, from the direct sound to early
reflections and finally to late reverberations, creates a natural
sequential structure that aligns with autoregressive frameworks.
Each part of the RIR depends on the previous parts, as reflec-
tions and reverberations result from the propagation of earlier
sound waves. This sequential dependency mirrors the structure
of language data, motivating our adaptation of autoregressive
principles to RIR modeling.

While promising, the potential of temporal models for RIR
generation via autoregressive learning remains underexplored.
In this paper, we propose a novel generation scheme for RIR
estimation through autoregressive learning. However, applying
autoregressive models to generate RIRs is challenging [19, 20].
First, the sampling rate of RIRs is usually high; token-wise au-
toregressive generation incurs significant computational over-
head. Second, the traditional next-token prediction scheme
struggles to capture long-term dependencies, resulting in error
accumulation that degrades overall RIR quality. These limita-
tions necessitate a hierarchical approach to balance computa-
tional efficiency and temporal fidelity.

To this end, we design a multi-scale learning scheme that
hierarchically models RIRs from coarse to fine resolutions. By
discretizing RIRs into latent tokens at increasing scales, we au-
toregressively predict subsequent resolutions while preserving
temporal coherence, as shown in Fig. 1. Additionally, we intro-
duce a dedicated vector-quantized autoencoder to tokenize raw
RIRs, enabling autoregressive generation across scales.

Extensive experiments demonstrate that our approach
achieves an improvement of 28.1% in Reverberation Time (T60)
and 92.1% in Early Decay Time (EDT) over FastRIR [10]. Our
model performs comparably to neural implicit and ray-tracing-
based approaches while reducing inference time by 59.0%.
Evaluations on speech synthesis datasets further show that our
method introduces no additional word error rate compared to
ground-truth RIRs.
Contributions: To the best of our knowledge, this paper
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Figure 2: The sequential structure of RIR

presents the first-of-its-kind temporal modeling framework for
RIR generation via multi-resolution autoregressive learning.
We propose a novel token ordering scheme to capture both
coarse- and fine-grained RIR features. Additionally, we design
a vector-quantized autoencoder to tokenize raw RIRs and gen-
erate them through autoregressive modeling. Comprehensive
experiments validate the efficacy of our approach.

2. Multi-scale Temporal Modeling
2.1. Autoregressive Learning and RIR

The success of large-scale language models like GPT has
demonstrated the immense potential of autoregressive model-
ing in capturing sequential dependencies [21, 22, 20, 23]. At
its core, autoregressive learning decomposes a joint probability
distribution into a product of conditional probabilities, where
each subsequent element in a sequence is predicted based on
its predecessors. Autoregressive modeling excels at captur-
ing dependencies within sequential data, enabling coherent and
contextually relevant generation through step-by-step inference.
While this approach has achieved significant success in natural
language processing, its applicability extending to domains in-
volving sequential data with inherent temporal structures, such
as RIRs, is untouched. For RIRs, the temporal evolution of
sound propagation aligns naturally with autoregressive princi-
ples. Mathematically, as shown in Fig. 2, an RIR is represented
as a time-domain signal h(t),

h(t) =

N∑
n=0

αnδ(t− τn) + r(t), (1)

where N is the number of reflections, αn is the amplitude of the
n-th reflection and τn is the time delay. We use δ(·) to represent
the impulse response while r(t) denotes the late reverberation
component. RIRs capture how sound evolves from the direct
source emission to interactions with surfaces and eventual de-
cay. This process is inherently causal and sequential: the direct
sound precedes early reflections [24, 13], which subsequently
generate late reverberations. In other words, sound propaga-
tion adheres to strict causality, i.e., future states depend on past
events. This causal chain mirrors the step-by-step generation
process of autoregressive models. By conditioning each predic-
tion on previously generated samples, it can precisely replicate
the temporal dynamics of RIRs with high fidelity.

2.2. Multi-Scale Temporal Modeling

A typical autoregressive framework involves three phases:
quantization, autoencoding, and autoregressive generation.
Quantization determines how the RIR is discretized into units
and the sequence in which these tokens are predicted. The

critical challenge lies in temporal modeling, i.e., decomposing
the RIR into discrete units while preserving the causal struc-
ture of sound propagation. Central to this process is the order
of tokenization. Traditional text-based autoregressive models
adopt next-token prediction, tokenizing data word-by-word or
character-by-character. While effective for language, this ap-
proach is ill-suited for RIRs due to fundamental differences in
data structure. RIRs are sampled at high rates (e.g., 48 kHz)
[19], producing sequences spanning tens of thousands of sam-
ples. Tokenizing at the sample level would incur prohibitive
computational costs and struggle to model long-term dependen-
cies like decay envelopes or reflection timing.

To address these limitations, we propose a multi-scale tok-
enization scheme that partitions the RIR into tokens at varying
temporal granularities. Instead of sample-order tokenization,
we represent the RIR hierarchically as h(k)(t), where k denotes
the scale index. Inspired by the impulse energy αk and delay τk
in Eq. (1), each scale h(k)(t) captures progressively broader
temporal and amplitude ranges, expanding from early/high-
amplitude components (direct sound) to late/low-amplitude fea-
tures (reverberation). At scale k, the representation h(k)(t) is
derived by applying temporal and amplitude scaling operators
Tk and Ak to the original RIR h(t):

h(k)(t) = Tk(h(t))⊙Ak(h(t)), (2)

where ⊙ denotes element-wise multiplication. The temporal
operator Tk restricts h(t) to a window [t

(k)
start, t

(k)
end ]:

Tk(h(t)) =

{
h(t), t ∈ [t

(k)
start, t

(k)
end ],

0, otherwise,
(3)

with linearly expanding boundaries:

t
(k)
start = 0, t

(k)
end = γkTmax. (4)

Here, γk increases linearly with k (γk > γk−1). The amplitude
operator Ak scales h(t) to emphasize specific ranges:

Ak(h(t)) = σk(A) · h(t), σk(A) = ηkAmax, (5)

where ηk decreases linearly with k (ηk < ηk−1).
This hierarchical tokenization captures coarse-to-fine RIR

features. Coarse scales focus on prominent early components
(direct sound, major reflections), while finer scales resolve late
reverberations and subtle amplitude variations. Tokens are
generated progressively, with finer resolutions conditioned on
coarser ones:

P (H(k)) =

M∏
m=1

P
(
h(k)
m

∣∣H(1), H(2), . . . , H(k−1)
)
, (6)

where H(k) denotes tokens at resolution k and h
(k)
m is the m-th

token. This conditional dependency preserves the causal sound
propagation structure, mirroring the natural energy evolution in
rooms: direct sound establishes the envelope, followed by re-
flections that shape reverberation tails.

3. RIR Generation
In this section, we will present our RIR generation pipeline de-
sign. At a high level, our framework involves: (1) training a
multi-resolution Vector Quantization (VQ) autoencoder to com-
press RIR signals into a discrete latent space, and (2) training
an autoregressive model to learn the temporal dynamics of RIRs
conditioned on room geometry.
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Figure 3: Dual-Phase Training Procedure. At Phase 1 (P1), the
network learns the codebooks through a VQ autoencoder using
the multi-resolution scale scheme. At Phase 2 (P2), the network
accepts the geometry condition vector G(r) and the token S(t)
to predict the corresponding token keys.

3.1. Multi-Resolution Vector Quantization Autoencoder

Consider the RIR h(t), the VQ tokenizer wants to learn the the
discrete latent S(t) though the encoder and a quantizer, i.e.,

E(t) = E (h(t))

E(t) Scale−−→ E(k)(t)

S(t) = Q(E(k)(t))

(7)

where E(·) represents the encoder and Q(·) is the vector quan-
tizer. During this process, the encoder compresses the input RIR
into a continuous latent representation. The continuous latent
representation is later mapped to the nearest embedding vector
in a discrete codebook C via the vector quantizer, resulting in
a discrete latent code. Note that the sequence that we feed the
E(t) into the quantizer follows Eq. (2), where we scale the con-
tinuous latent along the temporal and amplitude dimensions. At
the training stage, the decoder D(t) takes the quantized latent
representation and reconstructs the original input data h′(t).

The goal is to minimize the reconstruction error between
the input and output, while minimizing the distance between
continuous latent representation and the embedding vector. To
train the RIR-aware quantized autoencoder, we incorporate a
combination of different losses, i.e.,

Lq = λc · Lc + λt · Lt + λf · Lf + λg · Lg (8)

where Lc is the commitment loss, which penalizes deviations
between the encoder’s output E(t) and the selected embedding
vector S(t), ensuring that the encoder commits to the discrete
latent space. Lt and Lf compare the signals with the ground
truth in the temporal and frequency domain, respectively. Lf

involves the MSE loss between the amplitude and phase in the
spectrum. At last, the generator loss Lg is included to measure
how well the generator is able to fool the discriminator into clas-
sifying the generated faked RIR as real.

3.2. Autoregressive Prediction

Once the multi-resolution VQ autoencoder has been trained,
it can be used as the foundation for autoregressive prediction.
Specifically, the autoregressive model will map the discrete la-
tent codes and learn to predict the next latent code in a ordered
sequence, enabling the generation of new RIR samples.

Notably, RIR compresses the geometry information in the
temporal responses. Normally, the geometry information can
include the room size croom(r), the speaker location cTx(r) and
the microphone location cRx(r), where r is a 3D Cartesian co-
ordinate. Additionally, to feature the propagation in the room,
we incorporate Reverberation Time (T60) as one condition [10].
We concatenate them together to form the room geometry and
embed it into the geometry condition vector G(r). To this end,
the autoregressive model predicts the next latent code st given
the previous codes s<t and the geometry condition vector G(r),

P (st|s<t,G(r)) = R(s<t,G(r)). (9)

We use the cross-entropy loss to train the autoregressive model,

LR = −
∑
t

logP (st|s<t,G(r)). (10)

At the inference stage, the RIR is reconstructed conditioned
on the room geometry condition G(r). We first sample the la-
tent codes from the learnt distribution,

st ∼ P (st|s<t,G(r)). (11)

We append st continuously until the desired length is reached.
These discrete latent codes will then be used to look up the cor-
responding embedding vectors and reconstruct the RIR:

h′(t) = D(C(s)). (12)

4. Evaluation
4.1. Implementation Details

Backbone: We use SEANet [26] as the backbone of autoen-
coder. It converts temporal RIR into latent expressions using
series of convolutional layers. The latent representation is then
quantized by the residual vector quantizer [19]. When training
the VQ autoencoder, we also follow the design of adversarial
training, where the generator is trained to fool the discriminator
into classifying the generated RIR as real. We adopt common
decoder-only transformer similar to previous works [20] for the
implementation of autoregressive model.
Training Details: For the tokenizer, we use Adam optimizer
and a learning rate of 1e-5, with a cosine learning rate scheduler.
The scaling is done by interpolation in practice. We set the
weight of each loss component as equivalent, and we train the
model for 50 epochs with a batch size of 16, with the first two
epochs as warm-up using a learning rate proportion of 0.005 and
0.01. For the autoregressive model, we use Adam optimizer and
a linear learning rate scheduler with a learning rate of 1e-4. We
train the model for 20 epochs. The training is conducted on a
single NVIDIA A100 GPU.
Dataset: We train and evaluate our model’s performance on
real-world datasets by adopting two commonly used room im-
pulse response datasets: MeshRIR [27] and Real Acoustic Field
(RAF) [25]. MeshRIR collects RIRs in a cuboidal room. We
use S1-M3969 dataset split featuring a fixed single speaker for
evaluation and the RIRs are resampled to a 24 KHz sampling
rate. We use the empty office settings from RAF. We use 90%
of the data to train and the rest 10% for testing.
Metrics: We use comprehensive metrics to evaluate our work.
These include T60 percentage error, Early Decay Time (EDT)
error as well as the phase and amplitude error. Schroeder’s re-
verse integration method is utilized to derive the energy decay
of the RIRs [7, 28]. The EDT is calculated as the time taken for



Table 1: Overall Performances on different datasets: MeshRIR and RAF

Method MeshRIR [10] RAF [25]

Metrics Phase Amp EDT (ms) T60(%) Phase Amp EDT (ms) T60 (%)

FastRIR [10] 1.61 1.00 628.4 32.13 1.62 5.03 520.0 48.7
NAF [14] 1.61 0.75 39.0 4.21 1.27 2.24 36.14 6.5
AVR [16] 1.28 0.15 10.99 3.90 1.62 0.33 24.52 6.19

Ours 1.62 0.34 49.62 4.05 1.62 0.78 24.28 5.34

the energy to decay by 10 dB. The phase and amplitude errors
are calculated as the mean absolute error between the generated
and ground truth RIRs in the frequency domain.
Baselines: The primary focus of this paper is the generation of
RIRs. To evaluate our approach, we compare it with three exist-
ing methods: FastRIR [10], NAF [14], and AVR [16]. Among
these, FastRIR employs a purely generative approach, while
NAF and AVR incorporate neural implicit modeling which re-
quire intensive computing and modeling.

4.2. Overall Results

The results are available in Table 1. Our method demonstrates
significant improvements in RIR generation quality. On the
MeshRIR and RAF datasets, we achieve T60 errors of 4.05%
and 5.0%, respectively, outperforming the generative method
FastRIR by factors of 8x and 9x. Furthermore, our approach
achieves an EDT error of 24.28 ms on the RAF dataset, a sub-
stantial improvement over FastRIR, which renders an EDT of
520.0 ms. In terms of amplitude error, our method reduces the
error by 1.9% and 5.7% compared to FastRIR. These results
highlight the effectiveness of our proposed temporal modeling
for enhancing the accuracy and quality of RIR generation.

We also benchmark our method against neural-based ap-
proaches, i.e., NAF and AVR, which leverage neural represen-
tations to model room geometry comprehensively. While these
methods excel in capturing detailed room characteristics, our
approach achieves comparable performance without requiring
intricate geometric modeling. Notably, our method achieves a
marginal T60 error of just 0.15% compared to AVR and even
outperforms NAF in T60 accuracy. On the RAF dataset, our
model surpasses AVR and NAF by 16% and 22%, respectively,
in terms of T60 error. Additionally, our EDT error of 24.28
ms outperforms both NAF and AVR, further underscoring the
strength of our approach. These findings demonstrate the ad-
vantages of our proposed generation model. Compared to com-
plex neural implicit modeling techniques, our method achieves
competitive performance while significantly reducing the need
for detailed room geometry, thereby alleviating the burden of
labor-intensive data preparation.

4.3. Inference Time

We conduct a comparative analysis of inference time between
our model and existing approaches. Despite our model hav-
ing the largest parameter size, it exhibits the lowest inference
overhead among the four methods considered. Specifically,
our approach reduces inference time by 59.0% compared to
AVR and 49.3% compared to NAF. This highlights the supe-
rior scalability and efficiency of our model for RIR generation
tasks. The significant reduction in computational overhead can
be attributed to the adoption of autoregressive modeling, which

streamlines the generation process while maintaining high per-
formance. These results underscore the practical advantages of
our method in delivering both accuracy and efficiency.

Table 2: Model Size and Inference Time

Model Number of Params Inference Overhead (ms)
FastRIR 115.27M 159.88

AVR 57.24M 135.27
NAF 2.1M 109.2
Ours 306.97M 55.4

4.4. Spatial Speech Synthesis and ASR

The RIR is commonly employed to generate spatial speech
[29, 10, 30]. In our approach, reverberant speech is synthesized
by convolving clean speech from the LibriSpeech dataset [31]
with randomly sampled RIRs. To evaluate the quality of the
generated speech, we decode the simulated reverberant speech
using two prominent Automatic Speech Recognition (ASR)
systems: Google Speech API and Meta Wit Speech API. The
performance is assessed in terms of Word Error Rate (WER).
When using Google Speech API, the reverberant speech gener-
ated with the original RIR results in a WER of 12.38%. No-
tably, when employing our generated RIRs, the WER remains
unchanged, indicating no degradation in performance. Simi-
larly, with the Meta Wit Speech API, the WER for both the
original and generated RIRs is consistently 18.97%. These re-
sults demonstrate that our generated RIRs effectively replicate
the acoustic effects of real environments while avoiding any ad-
ditional increase in speech recognition errors. This highlights
the fidelity of our RIR generation process in mimicking real-
world geometric and acoustic conditions.

5. Conclusion and Future Directions
In this paper, we introduce a novel temporal modeling frame-
work for Room Impulse Response (RIR) generation. Our ap-
proach leverages autoregressive learning to capture the sequen-
tial nature of sound propagation, paired with a multi-scale gen-
eration mechanism that dynamically adapts to varying tempo-
ral resolutions. This enables precise modeling of both transient
acoustic events and long-term reverberation patterns. Experi-
mental results demonstrate that our method outperforms exist-
ing RIR generation techniques by 28.1% in terms of T60.

In the future, we plan to enhance the framework by integrat-
ing room geometry embeddings with energy-decaying acous-
tic features, which could further refine spatial accuracy. Addi-
tionally, we will combine neural ray tracing with autoregressive
learning to improve robustness across diverse environments.
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